Nonexistence of periodic solutions for the FitzHugh nerve system

نویسندگان

چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Stability of Pulse Solutions for the Discrete FitzHugh–Nagumo System

We show that the fast travelling pulses of the discrete FitzHugh–Nagumo system in the weak-recovery regime are nonlinearly stable. The spectral conditions that need to be verified involve linear operators that are associated to functional differential equations of mixed type. Such equations are ill-posed and do not admit a semi-flow, which precludes the use of standard Evans-function techniques...

متن کامل

Nonexistence of Small, Smooth, Time-periodic, Spatially Periodic Solutions for Nonlinear Schrödinger Equations

We study the question of nonexistence of small spatially periodic, timeperiodic solutions for cubic nonlinear Schrödinger equations. We prove that for almost any value in a bounded set of possible temporal periods, there is an amplitude threshold, below which any initial value is not the initial value for a time-periodic solution. The proof requires a certain level of Sobolev regularity on solu...

متن کامل

Nonexistence of Solutions In

Consider the KPP-type equation of the form ∆u+f (u) = 0, where f : [0, 1] → R + is a concave function. We prove for arbitrary dimensions that there is no solution bounded in (0, 1). The significance of this result from the point of view of probability theory is also discussed.

متن کامل

Periodic Solutions of Nerve Impulse Equations

This paper continues the discussion of singular perturbation solutions of nerve impulse equations begun in [1]. Phase space analysis is used to study a general model of a biological process (e.g., nerve impulse, heartbeat, muscle contraction) consisting of a differential equation coupled with / "slow" and m "fast" equations (Eq. 4.1). The slow [fast] equations correspond to subprocesses whose r...

متن کامل

Nucleation in the FitzHugh-Nagumo System: Interface-Spike Solutions

We find nucleation solutions of N interfaces and K spikes to the one-dimensional FitzhHughNagumo system. Each spike sits asymptotically in the middle between two interfaces. We use the Lyapunov-Schmidt reduction method, in which the problem is split into a finite dimensional problem related to the translation of the K spikes and an infinite dimensional complement problem. However the complement...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Quarterly of Applied Mathematics

سال: 1991

ISSN: 0033-569X,1552-4485

DOI: 10.1090/qam/1121685